
Extending Document Management
Systems with User-Specific Active
Properties

PAUL DOURISH, W. KEITH EDWARDS, ANTHONY LAMARCA, JOHN
LAMPING, KARIN PETERSEN, MICHAEL SALISBURY, DOUGLAS B.
TERRY, and JAMES THORNTON
Xerox Palo Alto Research Center

Document properties are a compelling infrastructure on which to develop document manage-
ment applications. A property-based approach avoids many of the problems of traditional
hierarchical storage mechanisms, reflects document organizations meaningful to user tasks,
provides a means to integrate the perspectives of multiple individuals and groups, and does
this all within a uniform interaction framework. Document properties can reflect not only
categorizations of documents and document use, but also expressions of desired system
activity, such as sharing criteria, replication management, and versioning. Augmenting
property-based document management systems with active properties that carry executable
code enables the provision of document-based services on a property infrastructure. The
combination of document properties as a uniform mechanism for document management, and
active properties as a way of delivering document services, represents a new paradigm for
document management infrastructures. The Placeless Documents system is an experimental
prototype developed to explore this new paradigm. It is based on the seamless integration of
user-specific, active properties. We present the fundamental design approach, explore the
challenges and opportunities it presents, and show how our architecture deals with them.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems—Distributed databases; D.4.3 [Operating Systems]: File Systems Manage-
ment—Distributed file systems; E.5 [Data]: Files—Organization/structure; H.3.2 [Informa-
tion Storage and Retrieval]: Information Storage—File organization; H.3.4 [Information
Storage and Retrieval]: Systems and Software—Distributed systems

General Terms: Design

Additional Key Words and Phrases: Document management systems, document services, user
experience, active properties, component software

Authors’ address: Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304;
email: {dourish; kedwards; lamarca; lamping; petersen; salisbury; terry; jthornto}@parc.xerox.com.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2000 ACM 1046-8188/00/0400–0140 $5.00

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000, Pages 140–170.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F348751.348758&domain=pdf&date_stamp=2000-04-01

1. INTRODUCTION

Whether managing email messages, spreadsheets, image files, or textual
material, the world of the desktop computer is a world of documents, and
most users organize their documents by location in hierarchies. File sys-
tems, for instance, impose a hierarchical structure of folders onto which
users map their own semantic structures. More generally, hierarchies
pervade document and information storage systems. Email systems group
mail messages hierarchically, while Web browsers use hierarchies to store
bookmarks. Hypertext systems have explored richer models for relating
documents and document components, but have typically been focussed
more on information retrieval than on document organization; and still,
although a set of Web pages may be linked into complex hyperstructures,
the HTML source is typically stored in hierarchically organized files.

Unfortunately, strict hierarchical structures can map poorly to user
needs. The use of document locations as a fundamental organizing princi-
ple, and the restriction that documents appear in only one location at a
time, forces users to create strict categorizations of document types and
organization. Studies of actual document-filing practices suggest that these
restrictions interfere with user needs. In the cases of real-world document
collections, studies such as that of Trigg et al. [1999] or Bowker and Star
[1994] show that categorization schemes are far less stable or absolute than
they might seem. These problems carry over into the domain of electronic
document management. For example, Barreau and Nardi [1995] present
findings from a set of studies of file management on personal computers.
They observe little use of deeply nested structure or cross-linking (via
aliases or symbolic links), and instead note a preference for visual grouping
and location-based search. Strict hierarchical filing can make it hard for
users to do the following:

—File documents: Documents can appear in only one place in the hierarchy,
even though they may play different roles and be relevant to multiple
activities. For instance, a document concerning upcoming travel plans
might be relevant to both budgetary decisions and to scheduling, but it
can only be filed at one location in the hierarchy.

—Manage documents: Locations in the hierarchy conflate two roles, for
document organization and document management. For example, not
only are folders or directories used to group related files, but they are
also typically the unit of administrative control for purposes such as
backups and remote access. These administrative functions, then, impose
constraints on the organization of documents. These demands make it
harder to organize documents according to user needs.

—Locate documents: Documents may be filed according to one criterion, but
retrieved according to another. However, hierarchical systems cannot
represent the cross-cutting set of categorizations that might apply to a
group of documents, requiring that document filing and document re-
trieval be performed uniformly.

Extending Document Management Systems • 141

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

—Share documents: An organization that makes sense to one person may
not reflect the way that other relevant people think about the documents
or need to group them.

To mitigate these problems, most file systems provide some “file pointer”
mechanism such as aliases or links, allowing documents to logically appear
in multiple folders. However, these can introduce as many problems as they
solve. They create confusing distinctions among document name, document
location, and document identity, which make them difficult to manage, by
requiring users to understand the differences between acting on the link
and acting on the target document. Moreover, these distinctions are man-
aged differently in each type of file system; although they are intended to
address similar problems, mechanisms such as aliases in MacOS, shortcuts
in Windows, and hard and symbolic links in UNIX all have different
semantics.

In the face of all these problems, we conclude that, while strict hierar-
chies of locations may provide a logical structure for document storage
(meeting the needs of the system), they provide less useful support for
document interaction (failing to meet the needs of users). This led us to
investigate new models for user-centered document interaction.

1.1 Placeless Documents

This article reports on our ongoing research into a new approach toward
document management. Our approach is based on document properties,
rather than document locations. Properties are the primary, uniform
means for organizing, grouping, managing, controlling, and retrieving
documents. Document properties are features of a document that are
meaningful to users, rather than to the system. Documents can have any
number of properties, reflecting the different features that might be rele-
vant to users at different times or in different contexts. To emphasize the
difference between interaction managed through document properties and
the more traditional approach of interaction managed through document
locations, we call our system Placeless Documents.

The Placeless Documents design is based on three core features: uniform
interaction, user-specific properties, and active properties.

Uniform Interaction. Most document storage and management systems
already provide some sort of document property (or “metadata”) mecha-
nism. Even conventional file systems record details such as the owner of a
file, its length, and when it was last accessed. Our approach takes this
facility much further. In the Placeless Documents system, document prop-
erties are the primary tool for document management and interaction.
They are used to record not only traditional metadata items, but also user
categorizations, keywords, links to related items (such as earlier versions
or procedure manuals), content-based features (such as indices or transla-
tions), and any other arbitrary value that a user or a program wants to
associate with the document. This allows document properties to be used as
a uniform interface for all document interactions.

142 • P. Dourish et al.

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

User-Specific Properties. One important aspect of document properties
is that a document has certain properties for a given individual. While one
person might think of a document as a paper about Placeless Documents,
someone else might think of it as an item in a clearance process, while a
third person might regard it as a disclosure of intellectual property. In
other words, document properties are expressed relative to the consumer of
the document, rather than the producer. This is a fundamental aspect of
the Placeless Documents design, and it manifests itself in two ways. First,
the system emphasizes high-level properties of documents rather than
low-level properties of files; and second, it supports the fact that different
individuals may have different and independent sets of properties related
to the same document. The property model provides the same interface for
properties that are private to an individual or public to the world.

Active Properties. A system using properties as a uniform categorization
model provides many advantages for user-centered document management.
However, we can also use properties to control document behavior. In the
Placeless Documents system, properties can be not only informative, or
what we call static properties; they can also be effective, or what we call
active properties. Like static properties, active properties can be assigned
by users and added to documents; but in addition to this core behavior,
active properties carry winnable code that can be invoked to control or
augment document functionality. For example, a “backup” property can
contain code that causes the document to be written to tape; a “summarize”
property can cause a summary (text or thumbnails) to be generated
whenever the document content is changed; and a “logged” property can
cause all document accesses to be recorded.

Placeless Documents derives much of its power by combining these three
features. By having both static and active properties, Placeless lets users
employ the same uniform interaction model not only to manage and group
their documents, but also to control document behavior and to extend and
configure functionality. Active properties can give users control over the
configuration and activity of system services such as content migration,
backup, and load balancing. By combining active properties with a user-
specific approach, the system can allow users to tailor the behavior of the
system to match their own specific needs, while still sharing uniform access
to document content.

This article presents the design of the Placeless Documents system. In
particular, it focuses on the technical issues that arise in extending
property-based document management with active properties, and in a
system that uses document properties as a uniform interaction paradigm.
The introduction of active properties into a document management system
presents both opportunities and challenges; we describe how our architec-
ture has developed to support active properties and how active properties
influence application development.

In the next section, we outline the use of document properties as the
basis for managing and interacting with documents, and discuss related

Extending Document Management Systems • 143

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

approaches. We then introduce the design of the Placeless Documents
system before focussing in more detail on how we tackled the challenges of
active properties.

2. MANAGING DOCUMENTS USING PROPERTIES

A variety of features make document properties an appealing model for the
development of a document management system. Most significant, perhaps,
for the needs of an interactive system is the uniformity of interaction that
properties allow.

Document properties can be used to reflect features of the documents
themselves (“size 5 134k”); of the activities over the document (“last-read
5 Dec 15 8:22”); of the relationship of the document to user activities
(“topic 5 budget”); and of the user’s requirements of the document system
(“backup.frequency 5 nightly”). All these different facets of document
management can be managed through the same fundamental mechanism
and hence the same interactive structures and styles. Properties like these
can be used to group documents, to control their status and presentation,
and to search for them; they can play the same role as file names, file
system locations, user interface switches, and application-specific proper-
ties, but within a single, uniform framework.

A single, unified “property space” yields further benefits even with only
static properties, since it also provides uniform integration between appli-
cations. Suppose the mail system records its information as document
properties (“mail.from 5 lamarca@parc.xerox.com,” “mail.subject 5 lunch
meeting Wednesday”), and suppose that same property mechanism is also
used by other applications such as the document summarizer, the access
manager, word processor, contact database, etc. Then the features of each
of these systems can be combined at a single level. Property-level searches,
for instance, can refer to and combine the data elements of each applica-
tion, which would otherwise require multiple applications with indepen-
dent, private interfaces.

Since document properties are individuable entities, independent of each
other, a property-based system can also manage the separate properties
reflecting the perspectives of different users on the same document. Prop-
erties are an entirely compositional approach to document organization, so
that multiple different views can be provided on the same document space.

We can also use properties to group documents. Placeless Documents
offers a collection facility that allows users to group documents together
and act on them as a unit. Membership in a collection can be derived
dynamically according to document properties (although they also have
static components, as will be discussed later).

Of course, not all “properties” are the same. Some properties are aspects
of the document that are universally applicable to all document consumers,
such as the document’s creation time and the format of its content. In
contrast, other properties are relevant only to specific individuals. When
one user tags a document as “interesting,” that should not affect others’

144 • P. Dourish et al.

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

view of the document; it is a personal property indicating only their own
relationship to the document. By the same token, other users might have
attached other properties reflecting their own perspectives on the docu-
ment; our user should not want to see those properties by default (although
they should be able to ask to see them, if allowed). The property model
provides natural support for these different aspects of properties. Since the
model makes properties explicit entities in their own right, not merely
derived features of documents, it allows us to make the property/document
relationship one that is relevant to document consumers.

Active properties extend this uniform control to behavior as well as
structure. Active properties encapsulate not only names and values but
also active code. Their design is motivated by the simple observation that
some properties have direct computational consequences. For instance,
when Mark attaches the “important” property to documents, he might want
that to mean that the document should be copied to a backing store
regularly. Similarly, if Jonathan marks a document as “currently in
progress,” he might want an up-to-date copy to be maintained on his laptop
for his next trip; and the fact that a document is being jointly authored
with a colleague suggests that it should provide multiple different versions
and be able to control and integrate changes that each contributor makes.
In other words, a variety of properties expressing high-level user concerns
can have consequences for how the system should operate. By allowing
properties to carry executable code, responsible for performing relevant
tasks that can achieve the needs expressed by these user concerns, we can
use this same simple property mechanism to make the document manage-
ment system active and responsive. In turn, using properties to control
these features of system behavior allows a level of uniformity and flexibility
that is hard to achieve in a world made up of tens or hundreds of separate
applications and control panels.

The combination of document properties as a uniform means of document
interaction and active properties as a mechanism for the delivery of
document services constitutes a new paradigm for the development of
document management infrastructures. Although some aspects of our
approach have appeared in other systems, the uniform use of document
properties as a means for users to manage and control document collections
in a distributed environment results in a different interaction style and a
new means of creating and delivering application services. The Placeless
Documents project has been exploring the opportunities this new paradigm
presents through an experimental infrastructure.

2.1 Related Work

Placeless Documents is not the first system to explore alternative models
for document management, or the first to employ properties as a means to
do this. Most file systems provide some model of properties or file meta-
data, although this has typically been fairly restricted. More modern
systems, such as the file systems provided by BeOS [Giampaolo 1998] or

Extending Document Management Systems • 145

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

Windows 2000 [Richter and Cabrera 1998], extend these mechanisms to
support arbitrary properties, but they do not use properties as the primary,
uniform mechanism for document interaction.

The Lifestreams system, originally developed at Yale [Freeman and
Fertig 1995], employs a “timeline” metaphor for managing personal docu-
ment collections. All documents, including email messages, working files,
etc., are organized according to the time that they entered the Lifestreams
system. Filters can be applied to focus on particular documents, but the
timeline is always the primary organizing metaphor for the document
collection. Lifestreams shares some of our concerns with a uniform model of
interaction, but differs in how this is realized by maintaining a primary,
superordinate filing mechanism (the timeline) and in organizing documents
primarily around system-derived properties rather than user-derived ones.

The Semantic File System (SFS), developed by Gifford et al. [1991], has
some similarities to Placeless Documents in terms of its basic model. SFS
uses a traditional file system interaction model, but backs it with a
dynamic database rather than traditional file system storage. It provides
“virtual directories” that are actually queries over the document collection,
and provides arbitrary “transducers” that represent file system documents
in the data tables. Collections in Placeless Documents share a number of
basic features with the virtual directories of the Semantic File System,
although, as will be discussed further, our collections provide additional
features to aid in everyday interaction. Indeed, our focus on supporting
direct user interaction for everyday document tasks is a primary point of
departure from SFS, which was oriented largely toward being able to
harness the power of a database in file-system-oriented command-line
interfaces. Although Placeless Documents provides a means for file system-
based interaction with queries and documents, we provide this largely as a
convenience for the integration of legacy applications; in our model, “cd”
and “ls” do not constitute a user interface.

Although a variety of document management systems provide some sort
of document property facility, few provide support for activity. In Lotus
Notes or Xerox’s DocuShare, applications can manage documents according
to their properties, but the properties themselves cannot encapsulate active
functionality. The Multivalent Documents work at Berkeley [Phelps and
Wilensky 1996] can activate document content by means of small, dynami-
cally loaded program objects, but provides control only over document
content, rather than higher-level document management.

The notion of being able to attach code to documents as a means to
control their behavior is similar to approaches taken in some other areas of
systems development. For example, prototype-based object-oriented pro-
gramming languages such as Self [Ungar and Smith 1987] or Cecil [Cham-
bers 1992] adopt a model that is similar to ours; these languages focus
directly on objects rather than classes and blur the distinction between
slots (instance variables) and methods. In contrast to Placeless Documents,
however, these systems are largely tools for programmers and provide little
direct support for end-users.

146 • P. Dourish et al.

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

Finally, issues surrounding the use of user-level code to extend system
behavior have been explored in other areas. Operating systems, such as
Spin [Bershad et al. 1995], have provided mechanisms for user-level
extensions to operating system functionality. This allows them to achieve
considerable performance improvement by allowing user code to run safely
inside the kernel, both reducing the overhead of crossing the border
between user space and system space and tuning the operating system
policies to match user needs. Again, however, these facilities are provided
at the programmer level, and correspond to a systems-level view of OS
functionality, rather than being organized around high-level user needs.

2.2 Document Systems and Databases

One area of research that requires particular mention is database manage-
ment systems. The basic relational database model reflects an approach
that arose in response to the same set of concerns that motivate our work,
by providing ways to express richer sets of relationships between items
than strict hierarchies allow, and extracting structure as needed according
to the needs of particular settings and situations. Object-oriented data-
bases extend these ideas by combining data items with functionality to
produce encapsulated objects, and defining relationships between them;
and active databases also provide a model that allows activity and process-
ing functionality to be added to data items [Kim 1990; Paton and Diaz
1999]. In many ways, these reflect a set of concerns similar to those that
have shaped the Placeless Documents design.

However, other criteria have also influenced our design, and have led to
significant differences from the traditional database approach. The first of
these is that Placeless is a document system. This introduces a duality
between metadata (properties) and content, and suggests that the system
must have direct support for both. At the same time, it is crucial to our
model that documents and metadata be maintained separately, so that we
can dynamically incorporate document content from many different sourc-
es; so encoding document content as BLOBs (binary large objects) in a
standard database would not be a sufficient solution.1 The ability to
incorporate pointers to external content within a framework based around
metadata objects is not typically a core component of database systems
(although systems such as Garlic [Cody et al. 1995] do provide support for
encapsulated content objects). Second, Placeless is designed to support
end-users directly. Through the use of properties and collections, users can
create informal and fluid document organizations without predefined prop-
erty taxonomies or schemas. Through the use of active properties, users
have direct control over a compositional means for specifying system
functionality. Support for this style of direct interaction requires simpler
conceptual models for end-users, and sets different usage expectations and

1Similarly, this separation of metadata and content is also a distinction between Placeless
Documents and document systems based on XML, although we can use XML to import and
export documents.

Extending Document Management Systems • 147

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

effective optimizations. In particular, it leads to a different set of trade-offs
for data structures and typing. The more fluid sorts of interaction in which
end-users engage and the way that user information structures evolve over
time mitigate against the use of rigid schemas and strong typing. Much of
our implementation activity has been focussed on the consequences of this
issue.

Of course, these are largely matters of emphasis. Database systems can,
naturally, be used for fluid interaction and to manage external content, and
indeed, there is a database at the core of the Placeless Documents system.
However, the different patterns of use that an end-user document system
encounters raises a different set of design and implementation strategies.

3. PLACELESS DOCUMENTS DESIGN

Before we can discuss the challenges and opportunities arising from the
incorporation of active properties into document management systems, we
need to set some context. This section presents the conceptual design of the
Placeless Documents system and shows how active properties fit into the
design of the full system. The design presented here is embodied in our
current Placeless Documents implementation.

3.1 Personal and Universal Properties

Most documents that are of any interest have more readers than writers, or
are interesting to multiple individuals. The different parties who interact
with a document may have different opinions about the document, and may
stand in different relationships to it. We call the users of the document
“consumers,” and our goal is to support consumer-oriented document man-
agement. Our document model, then, must accommodate the needs of
multiple document consumers.

Placeless Documents supports two sorts of document objects, called base
documents and document references, illustrated in Figure 1. A base docu-
ment contains document content, while a document reference contains a
pointer to a base document. Both base documents and document references

Jonathan

Fiona

Mark

Base document

Document references

Paul

Fig. 1. Consumer-oriented properties. Universal properties are associated with the base
document and can be seen by all users; personal properties on a document reference are seen
only by holder of the reference, by default. So Jonathan sees six properties, while Paul sees
four and Mark sees five.

148 • P. Dourish et al.

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

have a set of document properties; we say that the properties are “at-
tached” to the document.

Document references combine their own properties with the properties
attached to the base document. We call the properties attached to the base
document universal properties, while those attached to a document refer-
ence are personal properties. For example, imagine that Jonathan holds a
reference to a document written and owned by Fiona. Features that are
universally true of the document, such as its format and its length, are
universal properties; they are attached to the base document, held by
Fiona, and so can be seen (access control allowing) by anyone who holds a
reference to that document. On the other hand, Jonathan’s annotations to
the document are essentially personal assertions about the document; if he
has marked it as being “interesting,” that may not hold for other people. So,
those properties are personal properties attached to Jonathan’s document
reference. They will not affect the view of other people holding references to
Fiona’s base document, unless someone explicitly asks, “what does
Jonathan think about this?”

The owner of a base document can also hold a reference to that same
document. This permits document owners to use the same separation of
universal and personal properties that would be available to other users.

3.2 Static and Active Properties

Document properties have names and values. The property namespace is
organized in a hierarchy for each document; this means that any property
can use local subproperties for recording state information. For example,
the “backup” property might use the subproperty “backup.lastrun” to
record the time when it last ran.

A property value can be any serialized Java object.2 So, although most
user properties hold simple values such as strings, or slightly more compli-
cated ones such as dates, application programs can use properties to record
complex data structures.

In addition to their name and value, active properties include code that is
executed when certain operations are performed on the documents to which
they are attached. The operations that active properties can monitor
include adding a document to a collection, adding or deleting properties,
and reading the content. Active properties can intercept these operations
before or after they occur, or contribute to the execution of the action,
according to the needs of the particular application. By attaching active
properties to a document, users can tailor and augment the default behav-
iors of the system.

3.3 Collections

In traditional systems, the logical structure of the document space is
provided through the standard hierarchical structure of the file system.

2Placeless Documents is written entirely in Java. At the time of writing, it comprises
approximately 100,000 lines of code written in Java 1.2, using JFC, JNDI, JDBC, and RMI.

Extending Document Management Systems • 149

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

The Placeless Documents design is an attempt to move away from that
standard model, but it must still support the ability to group documents
together. Our design allows users to group documents into collections.

The Placeless Documents system uses the “fluid-collection” design that
we developed in an early prototype called “Presto” [Dourish et al. 1999a].
The fluid collection design balances the tension between wanting to be able
to provide “live” collections backed by database queries and wanting to
make these collections manipulable by users. In a purely dynamic design in
which all collections were simply queries, manipulating the contents would
be problematic, since modifications to the collection would be lost when the
query was next evaluated.3 Our goal was to be able to combine liveness
with manipulability.

Fluid collections have three components. The first is a query over
document properties; documents matching the query are members of the
collection. The second is the inclusion list, which identifies specific docu-
ments to be included in the collection even if they do not match the query.
The third component is the exclusion list, which identifies specific docu-
ments to be excluded from the collection even if they do match the query.
Any of these components can be empty. For instance, if the inclusion and
exclusion lists are empty, then the collection is defined entirely by the
query. On the other hand, if the query is empty, then the collection has no
dynamic component, and instead its membership is defined statically by
the elements of the inclusion list.

The fluid collection design thus combines the benefits of dynamic and
static collections. The query component allows collections to be defined
dynamically, and their membership will grow and shrink as the document
property space is manipulated. The two list components allow the results of
the query to be modified directly, so that users can add and remove
documents to the collection and have their modifications be stable over
time.

Collections are, themselves, a form of document; so collections can be
nested inside each other, can be assigned both active and static properties,
can be organized according to the needs of individual users, and so on. In
fact, in our current implementation, “collectionness” and “contentness” are
two independent aspects of a document. Documents can have neither
contentness nor collectionness, in which case they are “empty documents,”
essentially just collections of properties. With content features added, a
document becomes a “content document,” while with collection features
added it becomes a “collection document.”

Clearly, a fourth document type is available, that has both contentness
and collectionness, implementing methods that access content and methods
that allow their membership to be listed and changed. We call these

3One solution to this problem would be to let users manipulate the query indirectly by
manipulating the content; however, investigations suggest that even forming valid queries is
often a difficult task for end-users, and manipulating them indirectly would be doubly difficult
[Greene et al. 1990].

150 • P. Dourish et al.

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

“combined documents.” Examples of combined documents in the real world
are ZIP files, JAR files, mail messages with MIME attachments, and other
formats that package and encapsulate other files. When these are imple-
mented as combined documents, Placeless users and applications can
access them as raw bit streams or as structured collections, as necessary.

3.4 Interfaces Above and Below

Although users see base documents as containing content, the Placeless
Documents system does not, itself, store document content. Rather than
being “yet another place to put your documents,” the Placeless Documents
system integrates and unifies existing document repositories through the
use of what we call “content providers.”

Every content document has a special active property called its content
provider. This property knows how to read and write content from the
underlying repository that holds it. For example, one class of content
provider might know how to read and write to normal file system files on
the host platform; another might know how to retrieve documents stored on
the World Wide Web; and further content providers might retrieve the
document content from an IMAP server or a custom database. The Place-
less Documents system invokes the document’s content provider whenever
a request is made for the document content; the content provider contacts
the relevant document repository and serves the document’s content for
Placeless. Some content providers may serve content that does not reside
on any repository, but is instead generated dynamically, thereby support-
ing dynamic, virtual documents. Most documents, however, have “real”
static content stored in an underlying repository.

The content provider mechanism provides a variety of benefits in the
Placeless Documents system. One obvious benefit is that the system
remains independent of whatever local document storage facilities are
available. Another is that it applies our principle of uniform interaction
across the range of document repositories already in everyday use. A third
benefit is that it allows collections in Placeless Documents to be heteroge-
neous, containing documents that are actually stored in different reposito-
ries. A fourth is that content providers allow dynamic document content to
be integrated seamlessly into the Placeless Documents framework. Finally,
using content providers allows for easy extensibility to new document
repositories or custom storage systems.

Content providers are a mechanism to get document content into the
Placeless Documents system from underlying document repositories, but
this is only half of the content path problem. The other half is offering
document content, and Placeless Documents facilities are offered to appli-
cations that sit on top of the Placeless Documents infrastructure.

For developers writing new applications, the Placeless Documents system
offers an API consisting of Java classes structured in terms of documents,
collections, and properties. As discussed in the next section, applications
may, in fact, be decomposed into a number of active properties, which are
also written in Java.

Extending Document Management Systems • 151

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

However, our goal is not simply to offer an infrastructure for the
development of new applications but also to provide an integrated platform
for interacting with existing documents, which implies interacting with
existing document applications. Existing applications, of course, were not
developed to use Placeless’ document model; for the most part, they were
designed to operate over normal file systems. So, to support these applica-
tions, we provide a file system layer on top of the Placeless Documents
infrastructure. The Placeless Documents system implements an NFS (Net-
work File System) server, providing access to stored documents through the
standard NFS remote file access protocol [Sun Microsystems 1989]. This
permits the Placeless Documents system to appear as part of the standard
file system of a client computer, so that file-oriented applications can access
documents stored in Placeless. Using this mechanism, standard “legacy”
applications such as Microsoft Word or Adobe Photoshop can operate on
Placeless Documents even though they know nothing about the Placeless
Documents APIs and functionality. Of course, Placeless Documents and
traditional file systems have different semantics and different approaches
to document identity, which can cause some problems in trying to effect
this integration. We discuss specific problems and solutions elsewhere
[Dourish et al. 1999a].

The overall structure of the system is illustrated in Figure 2. The
Placeless Documents infrastructure essentially acts as a distributed switch
for document content, unifying disparate sources and making them seam-
lessly available within a single framework.

Native applications
Legacy applications

Java interfaces

NFS Server

Filesystem

IMAP Database

Web
DMS

Placeless Documents core

Fig. 2. The Placeless Documents system integrates content from multiple repositories and
makes it available through a number of different interfaces. A native Java API supports
Placeless-aware clients; the Java Streams interface supports Java Beans; and a custom NFS
implementation supports legacy applications that expect to interact with a file system.

152 • P. Dourish et al.

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

4. USING ACTIVE PROPERTIES

A principal focus of our research into Placeless Documents has been the
opportunities offered by active properties. Active properties offer a means
for users to configure, customize, and extend document system functional-
ity using the same uniform interaction mechanism that they use for other
document system interactions.

Active properties carry code with them. This code allows an active
property to be involved in the execution of document operations on the
documents to which the property is attached. Using active properties, then,
users can control the behavior of the system on a document-by-document
basis. The functionality of multiple properties can be combined on a single
document. The interface signature of the active property code indicates to
the system which events the code should be involved in. The Placeless core
engine provides a property dispatch mechanism which invokes active
property code during document operations, such as reading or writing
content or adding properties.

4.1 Active Property Dispatch

Three sorts of active property code can be associated with each document
operation, corresponding to three forms of involvement in the document
operation itself. The dispatch engine processes each active property type
separately.

When an operation is invoked on a document, the dispatcher first calls all
relevant verifier properties for that operation. Verifier properties are
intended to validate document operations; any verifier property can veto a
document operation. Verifier operations can be used to perform fine-
grained, document-specific access control.

If all the verifiers accept the operation, then the registered performer
properties are called. Performer properties are those responsible for actu-
ally carrying out the requested document operation. Since different proper-
ties added to the document might affect an operation in different ways,
performers have to be composed. For example, consider a document that
has two properties, compressed and encrypted, each of which transforms
document content. These properties register performer operations for the
readContent operation, which constructs a stream for reading the docu-
ment content. Their performer properties construct a stack of filter
streams, each built on top of the previous one, each performing its own
operation (compression/decompression, encryption/decryption) and combin-
ing to achieve the desired functionality. Performer sequencing is deter-
mined by a global order on document properties, which can be controlled by
users.

Finally, once an operation has been performed, all relevant notifier
properties are called. Notifier properties have no return value; they are
intended for updating state, logging activity, and related functions. For
example, a property that maintained an access log might register a notifier
action for document operations; or a property that provided document

Extending Document Management Systems • 153

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

summarization might use a notifier to be informed when document content
has been changed.

Naturally, an active property may be interested in more than a single
event; the interface allows an active property to become involved in a
variety of operations. For example, a property that maintains a history of
writes to the document may want to be notified on calls to addMember,
writeContent , addProperty , setProperty , and deleteProperty , since
these all constitute “writing” operations of one sort or another. Active
properties can implement any combination of verifiers, performers, and
notifiers.

The separation into verifiers, performers, and notifiers simplifies the
active property facility for both writing active properties and dispatching
the operations. From the perspective of the active property writer, it allows
programmers to focus specifically on the operations they want to perform.
From the perspective of the dispatch mechanism, it simplifies property
ordering issues by making a functional separation between different phases
of property execution.

4.2 Extending Document Functionality

By associating new functionality with the core operations supported by the
document system, active properties can specialize the behavior of docu-
ments in different situations. Active properties can also extend the behav-
ior of the system to incorporate new functionality that is outside the core
operations through a “delegation” mechanism.

One of the core operations that all documents support is getDelegate-
For . The primary parameter to this method is an “interface” or abstract
class signature, describing some Java functionality. The getDelegateFor
operation returns a delegate object for the document that supports the
named interface.

For example, suppose we want to extend the system to support language
translation for textual documents. Although all our documents support the
core operation readContent , there is no support in the core document
interface for the methods readFrenchContent or readGermanContent .
While language translation is not the sort of facility built directly into our
infrastructure, we would like to be able to integrate it into our system by
adding the “Translation” property to a document which extends that
document’s functionality with this new behavior.

With the delegation mechanism, we can achieve this by defining a new
interface called TranslatableDocument , which contains the methods
readFrenchContent and readGermanContent . When client programs
want to be able to use the extended translation operations on a document,
they call the getDelegateFor operation to ask for a delegate for the
TranslatableDocument interface. The object that is returned from this
call is one that directly supports the TranslatableDocument interface and
acts as a translation delegate for the document. A call to readFrenchCon-
tent on the delegate operation returns the original document content

154 • P. Dourish et al.

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

translated into French.4 The relationship between the document, the active
property, and the delegate object is illustrated in Figure 3.

The delegation mechanism permits applications to incorporate arbitrary
functionality extensions into the Placeless Documents system. At the same
time, it also retains type-safety. If we simply used a mechanism such as
string identifiers to name and use document extensions, the compiler would
not be able to ensure type agreement, and so run-time errors could result;
at the same time, this would provide poor integration with the Java
programming model that application developers would use. Instead, delega-
tion lets programs deal with objects that directly support the extended
operations as pure Java methods, so that the compiler can ensure type
agreement in extension code.

4.3 Structuring Applications with Active Properties

Placeless Documents is a document management infrastructure, and so is
intended to act as a substrate supporting a variety of applications. As
outlined earlier, we provide a set of Java packages and classes allowing
application developers to write applications that depend on the core func-
tionality offered by the Placeless system. However, the active property
functionality provided by the Placeless Documents infrastructure does not
simply support applications, but transforms them. Active properties intro-
duce a new form of application structure. Since properties are manifest
directly at the programming level, they can also be created and manipu-
lated in program code; active properties can be added to documents directly
by applications.

Allowing applications to add active properties to documents essentially
gives them the ability to delegate application functions to the documents
themselves. The application functionality becomes distributed, in two
senses. First, it can be associated with the documents themselves rather
than concentrated in the application, so that it is distributed across the

4This raises important questions about document identity. Are translations in English and
French really the same document? What happens when I make a copy the document—is my
copy in English or French? Do references to other documents in the property values cause
them to be copied too? Our current approach addresses these as issues to be resolved on an
application-by-application basis, until we have developed more experience with the most
effective mechanisms and those most natural to users.

getDelegateFor()

readFrenchContent()

Delegate object

Fig. 3. The delegate mechanism allows an active property to extend a document’s interface
via a proxy object that delegates new methods for the document.

Extending Document Management Systems • 155

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

whole system rather than a single server or application site. Second, these
functions can be invoked as a consequence of independent action on the
documents rather than action controlled by the application, so that they are
carried out asynchronously, in direct response to document activity.

For example, consider an application to route forms through a business
process. In the customary approach, the document-routing application
would have to be running in order to manage this process; either users
would operate within the system, filling out forms and indicating the
completion of various tasks, or the application would be invoked when the
tasks were completed in order to move to the next stage. In the Placeless
Documents system, however, this can be achieved entirely with active
properties [LaMarca et al. 1999]. The application is responsible for tagging
appropriate documents with active properties, and then the properties will
carry out the document-routing functions. For example, the routing appli-
cation could operate by attaching a notifier active property for the close-
OutputStream operation. This operation is called when the user finishes
writing the document. At this point, the active property code can check that
the document has been completed correctly. If it has not, then the user can
be warned and asked to complete the form correctly. If the form is
complete, then the active property can use the information it contains to
route the form to the next relevant person. This routing application
capitalizes on both features of the active property application structure.
First, the application processing is directly connected to the documents
involved, rather than the application that operates on those documents. In
this case, the consequence is that any editor at all can be used to process
the form; the user does not have to use the application’s own form editor,
and, indeed, users do not even have to use the same editor. Second, the
activity of the application is directly connected to activity over the docu-
ments, making the application more responsive to user action and support-
ing the conceptual model of an “active” document.

5. SYSTEM ARCHITECTURE

So far, we have considered Placeless Documents on an abstract level. We
introduced the motivations for our approach, and described our extensions
to a simple static property model. This section discusses the system in more
detail. In particular, it is concerned with two topics. The first is distribu-
tion and the question of how the functionality of the system can be
distributed between multiple components to achieve reliability and respon-
siveness. The second is the kernel architecture and the question of how a
document management system can be made fast and scalable in the
presence of active properties.

5.1 Distribution Architecture

The Placeless Documents system is intended to be the primary means for
users to store, retrieve, and interact with their documents. This introduces
a range of important practical requirements. Placeless must be highly

156 • P. Dourish et al.

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

reliable and available, even in the presence of network outages and
overloads; it must scale well enough to support real environments, e.g.,
around 4000 hosts are registered in the domain parc.xerox.com ; and it
must operate in a world of firewalls, laptops, and modems, as well as in a
world of highly connected desktop PCs.

To meet these demands, we designed Placeless around a flexible distrib-
uted architecture. This architecture supports a variety of distribution and
replication schemes, but does not impose or require any; it provides a
framework for mechanism but does not specify policy. This supports three
goals. First, the design makes it easy for users and different implementa-
tions to participate in the Placeless system, without worrying about server
configurations, replication policies, and so forth. The sorts of policies
required for a large environment like PARC are unlikely to be the same as
for running between a few machines at home. Second, the design supports
using Placeless as a platform for the development of new distribution
schemes. New schemes can be easily incorporated into the existing Place-
less framework and will interoperate directly with existing client and
server implementations. Third, the design enables us to tailor the distribu-
tion and replication policies to emergent patterns of document access. Since
active properties are a new way of designing, implementing, and deploying
document services, we cannot be sure in advance which policies will best
suit this new environment, so our design is flexible enough to respond to
patterns of real use.

The primary components around which the Placeless distribution model
is organized are called spaces and kernels. A kernel is responsible for
managing some set of documents, and provides the core document manage-
ment functionality.5 All operations on documents are performed in kernels.
Together, one or more kernels serve a logical set of documents called a
space (each kernel belongs to exactly one space). Spaces are associated with
principals; typically, they correspond to individual users, although they can
also correspond to groups. So, in addition to my own personal space, my
project group might also have a space for documents that are not owned by
any particular one of us.6

Spaces are given complete autonomy for the distribution of documents
across their kernels. Different spaces, i.e., different implementations of the
Space object, can provide different distribution policies within a single
running Placeless system. The simplest Space implementation has only a
single kernel that operates on documents directly. A more complex Space
might maintain a number of different kernels, and divide documents
between them, balancing the load of document operations across different

5So, the name “kernel” denotes a central role within our architecture; it does not denote any
relationship to the operating system kernel. Our implementation is entirely in user space.
6Since document identifiers are unique across all spaces, the separation of personal and
universal properties (Section 3.1) also operates across spaces. Since a user can have personal
annotations on documents that are in a different space, organizing spaces by user is not
strictly necessary from a conceptual point of view, although it is useful in managing protection
domains.

Extending Document Management Systems • 157

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

kernel processes (and, potentially, different hosts). A Space might also
replicate documents across multiple kernels, to maintain high availability.

Spaces can also manage kernels that are not symmetric. For instance, a
user might want one kernel on their laptop and another on their desktop
machine. The desktop machine will be the primary document repository;
but some documents should be maintained on my laptop too, so they will be
available on trips away from the office. This Space might only copy
documents to the laptop kernel on the basis of an explicit request (through
a specific property), and maintain the desktop kernel as the default and
master kernel for all document operations.

Although the document operations are actually performed by kernels,
they are invoked on Space objects, which subsequently delegate to kernels.
A gatekeeper is a Space object that is responsible for deciding which kernel
will handle an individual document request, as shown in Figure 4. All
document operations are performed in terms of abstract document identifi-
ers, which name a space but not a kernel. When a document operation is
performed, the gatekeeper for the document’s space is contacted, and is
given the document’s identifier. The object that is returned is a direct
channel to a document in a kernel; the space is, in most cases, not involved
in further document operations.

Some operations, of course, must operate across kernels rather than
being mapped onto a single kernel or document. Queries, for instance, may
match documents stored in different kernels if the document space is
distributed. Rather than delegating the search to a particular kernel, the
gatekeeper is responsible for distributing search queries across all the
kernels it manages and assembling the results.

Although a space is intended to manage documents across kernels
autonomously, that does not imply that it receives no guidance from users.
After all, a user is often better able to express needs and expected uses
than a system is at guessing or extrapolating from current use. Expected
patterns of use or current needs are, of course, simply properties of the
document, and so can be expressed by attaching document properties. For
example, a property that monitors all writes and updates to a document

A User Space

Kernel Kernel

Kernel

Gatekeeper

Fig. 4. Documents are managed by kernels, which are in turn organized within spaces. The
gatekeeper is responsible for fielding document operation requests for a space and translating
them into references to documents, implementing whatever distribution or replication policy is
appropriate.

158 • P. Dourish et al.

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

can ensure that an up-to-date copy is maintained on a specific kernel, such
as on a laptop. In similar ways, active properties can ensure that a
document is always maintained on a high-availability server, should be
replicated, must not be replicated, and so on. In other words, properties can
be used to control the distribution policy and hence to achieve different
levels of service. This is not the first use of document properties to control
quality of service (see, for example, the work of Borowsky et al. [1997]), but
it offers this level of control within the same uniform framework as other
aspects of document management.

5.1.1 Caching. In a fully distributed implementation, each component
of the system (space objects, kernels, documents, etc.) can potentially be
remote to an application, residing on a different host or in a different
address space. The use of public-key certificates and other security tokens
means that the arguments to the remote calls may be large. Since we
operate in an environment that includes laptops and mobile devices,
components may become disconnected from the network. In the face of
these problems, we still want our system to be responsive and stable.

We introduce a multilevel caching approach for all potentially remote
objects [de Lara et al. 1998]. The core components of the system, such as
documents, are defined not as classes but as interfaces that objects may
implement. This allows multiple different implementations to be used
seamlessly. Any given object may be implemented by a direct local object or
by some form of proxy, which can stand for a remote object without any
changes to an application. Using proxies, we can allow a wide variety of
local/remote configurations, but the other problems still remain.

Allowing proxies to perform various levels of caching can overcome these
problems. Remote caching can be achieved by introducing proxy peers:
server-side objects that correspond to a client-side proxy. For instance,
consider an application making use of a document object. If the document
object is local, then it might hold the document object directly; but if the
document is remote, then it might instead hold a document proxy. The
document proxy implements the standard document interface, so that it is
indistinguishable to the application, but delegates these operations to a
remote object on the server side, which is the proxy peer for this particular
document proxy. Since that proxy peer corresponds only to this particular
instance of the document, the proxy and proxy peer can cache information
to reduce network traffic, such as the credentials of document operations.

Using document proxies can also help make the system more stable.
Consider the case where an application holds a document proxy object,
which corresponds to a document on a particular kernel, in this case, a
kernel on a laptop. When the laptop is disconnected, the document would
normally become unavailable to applications using it. However, in the
presence of replication, the application’s operation could conceivably be
completed against another copy of the document. To support this, our
proxies can also rebind a document pointer to a kernel document object by
detecting the disconnection of the original kernel and going back to the

Extending Document Management Systems • 159

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

gatekeeper to request the document a second time. Rebinding allows
applications to operate robustly in a fluid environment.

In summary, our caching architecture supports a range of effects to
improve performance and robustness and reduce network traffic and client/
server communication.

5.2 Kernel Architecture

The Placeless Documents kernel is the basic component responsible for
managing a set of documents, recording their properties, performing basic
document operations, and responding to queries. The kernel needs to be
both fast and scalable (although our distribution architecture, described
above, also provides for scalability).

With only static properties, an effective implementation is reasonably
straightforward. Our first prototype system provided no support for active
properties, and so could adopt a fairly simple kernel design, keeping
document objects in memory along with an index designed for fast query
performance [Dourish et al. 1999a]. However, the inclusion of active
properties introduces a number of problems into the design of the kernel.
Our prototype solution was not appropriate for Placeless, which requires
greater scalability than an in-core approach would allow.

The current Placeless Documents kernel, then, uses a relational database
as the primary live metadata store.7 The kernel maintains a fixed size
in-core cache of document objects for faster response, but the database
stores the “true” copy.

This design should allow queries over a kernel’s documents to be trans-
formed into database queries in SQL and performed directly in the data-
base. However, the presence of active properties can introduce a problem.
Our design made retrieving a property’s value one of the basic document
operations that active properties can override. This opens up the possibility
of properties with dynamic values, calculated on-the-fly as they are read.
For dynamic values, the database’s index is useless. Testing the property
value involves running real code, and that code can only be run in the
Placeless kernel, not in the database.

When we first encountered this problem, our solution was what we call
the “cache/refine kernel.” The cache/refine kernel distributes the work of
the query between the relational database and the kernel itself, attempting
to exploit the areas where each is powerful. The basis of the cache/refine
approach is that, although we cannot always be sure when we store a
property in the database what its value will be when we read it next, we do
know two things. The first is that we know there is a property with that
name, since properties cannot change their names. The second is that we
can know whether or not that property has a static value, because we can
tell the difference between active and static properties. The combination of
these features allows us to distribute the work of evaluating a query. When

7Placeless uses the JDBC interface to access a variety of databases; we currently run our
implementations against Oracle and MySQL.

160 • P. Dourish et al.

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

a property is stored in the database, it is marked to record whether or not
its value is potentially dynamic. Later, when a query is processed, it is
transformed into SQL and handed to the database. However, the query is
generalized at this point; instead of asking, “tell me all documents where
property ‘important’ is equal to ‘true,’” the database is asked, “tell me all
documents where property ‘important’ is possibly equal to ‘true.’” This set
includes those documents in which the value of property “important” is
statically defined with value “true,” along with those documents that have
a property called “important” with a dynamic value. Once this generalized
set has been returned from the database, the kernel itself is responsible for
testing the documents with dynamic property values and eliminating those
which should not be returned from the query. In this way, we can exploit
the scalability and fast index-based lookup provided by the database as
well as the dynamic values provided by kernel-based active properties.

As our experience with the system grew, however, we came to reconsider
particular aspects of the design such as the active properties that could
compute their own values dynamically. Initial application experience sug-
gested that this feature was only occasionally useful, but was always costly.
The current Placeless Documents implementation foregoes the cache/refine
kernel and relies on the delegate mechanism for applications requiring
dynamic property values, enabling more aggressive caching for faster
queries. The issues of dynamic data and the distribution of indexing and
caching functionality across kernel and database are ones that our ongoing
implementation efforts continue to explore.

5.3 The Placeless Object

Kernels, spaces, and proxies are features of the architecture but do not
form part of the basic programming model. To act as a unifying point of
entry into the system, we introduce an entity we call “the Placeless object.”
This object acts as a single point of contact for an application or for a
number of applications sharing an address space, similar to Gamma et al.’s
[1995] “Facade” pattern. The Placeless object is responsible for contacting
spaces, finding gatekeepers, managing credentials, and various other func-
tions that are necessary for architectural coherence but need not form part
of the programming model at the top level.

5.4 Security Model

The combination of active properties, document references, and a distrib-
uted implementation unavoidably implies that document operations may
cause user code to be run dynamically on a variety of possible hosts,
including user workstations and servers. In order to deal with the issues
that arise in this scenario, our architecture has been designed to support a
strong security model. As a purely practical concern, a strong security
model is an absolute necessity before anyone can be prepared to trust their
documents or their workstations to the Placeless Documents system.

Extending Document Management Systems • 161

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

Placeless’ security model is based on secure credentials. At the kernel
level, all API calls require credentials as an argument. Credentials identify
the user under whose authorization the operation is being carried out. The
kernel uses credentials to ensure that a user has authority to perform the
given operation, either because the owner of the document has authorized
the operation, or because some other user (or chain of users), authorized to
delegate permission for the operation, has done so under some currently
valid set of conditions.

In order for this scheme to be effective, credentials must be unforgeable.
We can achieve this by using public-key certificates as credentials. Public-
key certificates are digitally signed and authorized, so that they can be
trusted as secure identifications of the originating user. However, public-
key certificates can be large, and if they are used in a capability-passing
style, a single operation might involve multiple certificates; they would
quickly dwarf actual content on network transfers. To address this, we
exploit the caching model described earlier. Rather than having to pass the
credentials over the network for every single document operation, users can
present their credentials once to create a server-side proxy for the docu-
ment object which encodes their credentials. The server returns a unique
handle for the credentialled object to the originating user. Further opera-
tions on this document handle need not pass credentials across the net-
work; the server-side proxy will introduce the credentials into the local call
in the kernel (as shown in Figure 5).

6. DELIVERING DOCUMENT SERVICES WITH ACTIVE PROPERTIES

The preceding sections have introduced the basic conceptual model of the
Placeless Documents system, and explored the architectural implications of
active properties as a means for document management. Now that we have
seen how active properties can be supported in a system design, we focus on
how they can be used in document applications.

One important role active properties can perform is the delivery of
document services. Just as active properties result in a new model for
application structure, they can also transform document services. This
transformation takes place in two ways.

User

Kernel

User

Kernel

Fig. 5. Reducing network traffic by using credentialled objects. Instead of passing secure
credentials on every call, users can obtain a unique proxy object, which wraps their creden-
tials on the server side.

162 • P. Dourish et al.

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

First, property-based document services are centered on the document
and document activity, rather than on a separate application. To invoke a
document service such as translation, summarization, or format conversion
in a traditional model, users must either download their document to a
network-based service, or fire up the relevant application to provide that
service. In the Placeless Documents approach, they can operate directly on
the document; the properties to provide the desired service are attached to
the document and are invoked by operations over the document itself.

Second, document services are “componentized.” Individual properties
can be attached to individual documents, operated on individually, and
composed directly at the site of activity. The active property mechanism
sets up a framework for properties to interact with each other and “mix and
match” coherently under user control.

6.1 Content Transformation

One sort of document service that can be provided easily through an active
property is content transformation. Content transformation can take differ-
ent forms. For example, automatic language translation of textual material
could be one form of content transformation; or automatic annotation of
document content with information about the document’s history might be
another. Content transformation can also affect the basic storage format;
documents might be converted between the formats supported by different
word processors, for example, or between different image formats. Finally,
content transformation also includes those transformations that add value
to the document; for example, an encryption/decryption filter can be imple-
mented as a form of conditional content transformation (from an encrypted
form on disk to a decrypted form on the user’s screen).

We discussed earlier how content transformation could be achieved using
the delegation mechanism. However, this mechanism would only work with
applications that understood the specific semantics of the delegated opera-
tions, and knew to call them. We can also integrate content transformation
directly into the normal reading and writing of documents.

This sort of content transformation can be achieved easily with active
properties, since active properties can get involved in the construction of
input and output streams. The Java I/O model allows streams to be
“layered,” in which different classes can perform “filtering” operations on
the content to be read or written. By carrying code to take part in the
creation of an input stream, for example, an active property can insert a
filter that transforms the document content before it reaches the user. This
filter could be used for content transformation such as language transla-
tion. The code that the active property carries will be called directly as a
result of read operations, at which point it can send the content to a
network-based service or perform the service itself.

Extending Document Management Systems • 163

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

6.2 Access Control and Digital Property Rights

The use of verifier properties, which are offered the opportunity to veto
specific operations, provides an opportunity to perform creative forms of
access control.

All operations are validated against the credentials of the user invoking
the operation; since credentials can be passed around between users,
Placeless Documents can support a “capability” model in which rights are
first-class objects in the system. This mechanism is the basis of the
system’s security model and ensures that identities and access rights can
be reliably and accurately validated.

However, since arbitrary code can be encapsulated in an active property
and executed as part of the operation verification process, more compli-
cated solutions are also possible. For instance, suppose Jonathan has a
document that he wishes to make widely available for the payment of a
small fee. So that people can find out whether they are interested, he might
allow them access to a small summary of the document but restrict access
to the full content until they have made a payment.

He can achieve this with active properties by writing a verifier property
that will contact his server and check the credentials of the calling user to
see whether or not they have paid and whether or not they have been
validated for access to the document. When this property is attached to the
summary, it can be handed around and checked by people, but each read
operation will be dynamically validated.

However, a more interesting solution comes from taking a leaf out of the
“content transformation” book. Jonathan’s active property could transform
the content depending on whether or not the user has paid the fee for
reading the document. If the fee has been paid, then the user will receive
the full content; but if not, the content will be replaced with the summary
and an advertisement for the full document. This can be managed because
Jonathan’s code is called every time a document input stream is created. In
fact, there are other advantages too. Since the property is attached to the
document, it also travels around with the document when the document is
copied, emailed, etc. So the document can securely pass from one person to
another, and be copied and distributed. If someone likes it, that person can
give a copy to a friend, but that friend will only see the summary until
contacting the source to pay the fee. In order to avoid circumvention of this
scheme, this active property would intercept another operation—the opera-
tion of trying to remove this property from the document! Active properties
can be made active enough to be tamper-proof.8

8An example of this is a property we call “Immutable.” Immutable stands as a guarantee that
the document will never change. For example, when a manager signs a purchase authoriza-
tion, the Immutable property ensures that the contents of the purchase order cannot be
changed over his or her signature. The Immutable property fails to make this guarantee if it
can be removed; so it uses a verifier for the deleteProperty operation that ensures that not
only the content but also the properties (including the property of being Immutable) are
immutable.

164 • P. Dourish et al.

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

Active properties, then, not only simplify document use and management
by end-users, but also assist developers by supporting a new model for the
encapsulation and delivery of document services.

6.3 User-Specific Active Properties

Placeless Documents handles active and static properties seamlessly. This
means that active properties have names and values, just like static
properties; their values can be used, for example, to parameterize their
behavior. In addition, just like static properties, active properties are
user-specific.

Consider the document translation active property described earlier in
the section on content transformation. The purpose of the translation
property was to effect a transformation of document content for use by the
consumer of the document. So, the translation that is appropriate at any
given moment depends on who the consumer is. Different consumers need
different transformations; some people need the content translated into
French, into Spanish, etc. Just as with static properties, this is achieved by
using document references to capture user-specific document properties.
The properties recorded by document references can be active as well as
static, and they will be invoked on relevant operations on the document
reference. This allows each user to attach active properties that customize
the document system behavior to his or her own needs, while still main-
taining coordination through the base document content.

We described earlier the way that user-specific static properties allow
users to organize and categorize documents according to their own specific
needs, irrespective of how those documents are organized by others. User-
specific active properties give users the same flexible control over document
services and active behavior, moving computation closer to document
consumers.

7. EXPERIENCES AND OPEN ISSUES

At the time of writing, our Placeless Documents infrastructure has been
operational for over a year, and in daily use for around nine months. Our
implementation is built entirely in Java 2, and runs on a variety of
platforms and environments, including PCs under Windows NT and Linux,
and SPARCs under Solaris. It supports a variety of protocols for document
access, including HTTP, FTP, NFS, and IMAP. It supports a range of
applications developed by ourselves and our colleagues, including work-
group document corpus management, email, workflow, and mobile docu-
ment applications. Interactive response is fast enough to support novel
direct-manipulation interfaces, and we regularly operate with personal
document spaces numbering tens of thousands of documents and hundreds
of thousands of properties.

In designing, developing, and implementing the Placeless Document
system, a number of areas have been left open. These may be issues for
which we simply do not yet understand the problems well enough to make

Extending Document Management Systems • 165

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

an effective design decision, or areas that we explicitly wish to explore
using Placeless Documents as an infrastructure. Our early experiences
with application development have highlighted others.

One issue that we have already touched on is the question of the
structure of applications built on top of Placeless. Active properties, in
particular, introduce the opportunity for new models of application devel-
opment by supporting the migration of functionality from an application to
the document itself. However, even simple static properties can introduce
new models of application structure. In another paper [Dourish et al.
1999b], we discuss the experience of developing applications using static
properties. One common observation is that the property model creates a
duality in the infrastructure; it can act both as a document system
(managing access to content, grouping documents for inspection, etc.) and a
persistent object system (storing and searching metadata, linking represen-
tational structures, etc.). In one application, a tailorable collaborative
document repository for a specific work group we have been studying, we
explicitly exploit this duality not only to manage a large document collec-
tion but also to allow users to create and share customized views of the
structure of that document space. The system can use our infrastructure to
store both the documents and the encoded category structure descriptions
through which the workgroup collaborates. The general question of the
nature of “application” in the presence of an active infrastructure is one
which we are exploring through the development of a variety of applica-
tions that exploit the features of Placeless Documents; for instance, Ed-
wards and LaMarca [1999] discuss a set of applications in which applica-
tion functionality has been devolved to a set of active properties.

The question of application structure also draws attention to the manage-
ment of activity between client and kernel. In Placeless Documents, active
properties run in the kernel, while delegates allow component functionality
to migrate to clients. One common use of active properties is to allow
clients to be informed of kernel-level activity; a recently added notification
mechanism provides streamlined access to activity information. In develop-
ing applications on the Placeless Documents infrastructure, we are explor-
ing the balance between kernel and client activity.

Another set of open issues concerns the level at which the features of the
Placeless Documents system can be exploited by end-users. Again, the dual
nature of Placeless as both document system and object system is relevant
here; as well as offering system developers the ability to create new
applications based on a uniform document property paradigm, Placeless
also offers users the ability to exploit document properties directly to
manage their own document collections. The Vista browser [Dourish et al.
1999a] allows users to manipulate and organize their documents directly in
terms of properties, with multiple workspaces for supporting different
tasks and direct manipulation of dynamic queries and fluid collections.
Other applications focus on ways to incorporate information that reflects
specific document practices in order to control the flexibility that a proper-
ty-based approach offers and constrain it in ways that make it more

166 • P. Dourish et al.

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

effective for particular tasks, particularly where those tasks involve the
coordination of multiple individuals [Dourish et al. 1999c]. More generally,
we are interested in how the multiple parallel organizational schemes
allowed by document properties can support the fluid nature of everyday
document categorization tasks [Harris and Henderson 1999]. The develop-
ment of open and evolvable information structures must be balanced
against the structure within the system itself that is the basis of high
performance; the balance between these concerns is an important issue in
our current activities.

Third, a number of issues at the infrastructure level also remain to be
resolved. Document properties lie at the intersection of user and system
concerns. Properties can be employed to specify user requirements and
needs, and these needs can be exploited by the system infrastructure to
provide appropriate levels of service. So, for example, document replication
and caching can be informed by the properties used to express users’
interest and expectations of documents; and active properties can be a
means for the dynamic management of infrastructure services in response
to document activity. As discussed earlier, our architecture has been
designed to accommodate a wide range of replication schemes and styles.
We have also begun to explore the use of active properties to support
document content caching [de Lara et al. 1998] to improve responsiveness.
A number of features in the Placeless Documents conceptual design,
including active properties that transform content and per-user document
properties, introduce new challenges for content caching. Our current
implementation is designed to be highly configurable so that we can explore
effective approaches in the context of our different applications.

Finally, based on early development experiences, we are considering
ways to refine the APIs for application development. A number of possible
directions have emerged from our early explorations. One issue of particu-
lar interest is the use of semistructured schemas that programmers can
impose over the property store in order to express invariants and con-
straints for document objects that represent application state. This allows
programmers to incorporate higher-level information and automate some
aspects of data management in their applications, without giving up the
flexibility to create arbitrary new categorizations of documents and to
customize their behavior using active properties. In addition, this informa-
tion may be used at the database level to adaptively adjust the low-level
data organization for particular application workloads.

8. CONCLUSIONS

Documents in most systems are organized for the convenience of the
systems rather than their users. Such systems use strict hierarchies to
organize documents, and require users to adapt their document practices to
the structures that they impose. They make it hard for people to file, locate,
and share documents. Moreover, they separate documents from the activi-
ties that users perform over them, encapsulated in different applications.

Extending Document Management Systems • 167

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

The Placeless Documents system introduces the concept of personalized
document properties as a uniform mechanism for organizing, filing, group-
ing, retrieving, and manipulating documents and document collections.
Using properties as the fundamental mechanism for user interaction with
documents provides a number of benefits in comparison to traditional
hierarchical filing structures.

First, it allows documents to be managed for the document consumer.
Since different users can have different properties on the same document,
the control over the document and its use passes from the document’s
author to the many different consumers who may make use of it. Second, it
creates a single, uniform interaction model for a wide range of information
about the document. Information which would otherwise be locked inside
different applications (such as the titles of a presentation slides, the subject
lines of mail messages, and the classes defined by Java source files) can be
extracted and brought together in a single space and operated on by
common actions. Third, it reflects the “multivalent” nature of documents. A
single document may be relevant to users in a number of different ways,
reflecting the different roles it plays and the different tasks users might
want to perform. Since any number of properties may be attached to a
document, users can organize their documents into multiple cross-cutting
organizational structures.

The Placeless Document system is based on uniform interaction, user-
specific properties, and active properties. Uniform interaction stresses a
single global property space, integrating information from many sources.
User-specific properties allows users to organize and control shared docu-
ments in ways that are relevant to them individually. Active properties
carry code to be performed when specific operations are carried out on the
documents to which they are attached. Active properties can make docu-
ments responsive to the activities over them; they can be used to configure
and control system services; they can be used to deliver document services
seamlessly within the document management system; and they do all this
within the same uniform document property framework.

The incorporation of these features into a document management system
poses a number of conceptual and practical challenges. In this article, we
have described how we addressed these challenges in Placeless Documents,
a distributed, user-centric document management system that we devel-
oped as an infrastructure for property-based applications. Placeless Docu-
ments is designed to be a scalable, reliable, distributed platform for
document management.

We are currently exploring the consumer-focused active property para-
digm in a number of ways. First, we are developing a range of applications
that run on the Placeless Documents infrastructure, to explore how active
properties can be used to structure applications, associating functionality
directly with documents and giving users the means to directly configure
and control it. Second, we are investigating how infrastructure services
such as document replication and content caching can be controlled by

168 • P. Dourish et al.

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

active properties. Third, we are exploring how active properties can be used
to give end-users direct control over composable document services.

Our early experiences with Placeless Documents, as users and develop-
ers, suggest that it is a powerful infrastructure for the development of
novel document applications.

ACKNOWLEDGMENTS

We would like to thank a number of colleagues and collaborators for
contributions to the research described here, including Danny Bobrow, Dan
Greene, Mike Spreitzer, Mark Stefik, Dan Swinehart, and Marvin Theimer.
Our interns, Dirk Balfanz, Jon Howell, Eyal de Lara, and Minwen Ji,
contributed to the development of our prototype implementation, and early
users including Ian Smith, Tom Rodden, Michelle Baldonado, and Jacek
Gwizdka provided valuable feedback.

REFERENCES

AHLBERG, C., WILLIAMSON, C., AND SHNEIDERMAN, B. 1992. Dynamic queries for information
exploration: An implementation and evaluation. In Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI ’92, Monterey, CA, May 3–7), P. Bauersfeld, J.
Bennett, and G. Lynch, Eds. ACM Press, New York, NY, 619–626.

BARREAU, D. AND NARDI, B. A. 1995. Finding and reminding: File organization from the
desktop. SIGCHI Bull. 27, 3 (July 1995), 39–43.

BERSHAD, B. N., SAVAGE, S., PARDYAK, P., SIRER, E. G., FIUCZYNSKI, M. E., BECKER, D.,
CHAMBERS, C., AND EGGERS, S. 1995. Extensibility safety and performance in the SPIN
operating system. ACM SIGOPS Oper. Syst. Rev. 29, 5 (Dec.), 267–283.

BIER, E. A., STONE, M. C., PIER, K., BUXTON, W., AND DEROSE, T. D. 1993. Toolglass and magic
lenses: The see-through interface. In Proceedings of the ACM Conference on Computer
Graphics (SIGGRAPH ’93, Anaheim, CA, Aug. 1–6, 1993), M. C. Whitton, Ed. ACM Press,
New York, NY, 73–80.

BOROWSKY, E., GOLDING, R., MERCHANT, A., SCHREIER, L., SHRIVER, E., SPASOJEVIC, M., AND

WIKLES, J. 1997. Using attribute-managed storage to achieve quality of service. In
Proceedings of the Fifth International Workshop on Quality of Service (New York, NY),

BOWKER, G. AND STAR, S. 1994. Knowledge and infrastructure in international information
management: Problems of classification and coding. In Information Acumen: The Under-
standing and Use of Knowledge in Modern Business, Bud, Ed. Routledge & Kegan Paul
Ltd., London, U.K..

CHAMBERS, C. 1992. Object-oriented multimethods in cecil. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP’92, Utrecht, Belgium),
Springer-Verlag, Berlin, Germany, 33–56.

CODY, W. F., HAAS, L. M., NIBLACK, W., ARYA, M., CAREY, M. J., FAGIN, R., FLICKNER, M., LEE,
D., PETKOVIC, D., SCHWARZ, P. M., THOMAS, J., ROTH, M. T., WILLIAMS, J. H., AND WIMMERS,
E. L. 1995. Querying multimedia data from multiple repositories by content: the Garlic
project. In Proceedings of the third IFIP WG2.6 working conference on Visual database
systems 3 (VDB-3), S. Spaccapietra and R. Jain, Eds. Chapman and Hall, Ltd., London, UK,
17–35.

DOURISH, P., EDWARDS, K., LAMARCA, A., AND SALISBURY, M. 1999a. Presto: An experimental
architecture for fluid interactive document spaces. ACM Trans. Comput. Hum. Interact. 6, 2.

DOURISH, P., EDWARDS, K., LAMARCA, A., AND SALISBURY, M. 1999b. Uniform document
interaction with document properties. In Proceedings of the ACM Symposium on User
Interface Software Technology (UIST ’99, Asheville, NC, Nov.), ACM, New York, NY.

DOURISH, P., LAMPING, J., AND RODDEN, T. 1999c. Building bridges: Customisation and mutual
intelligence in shared category management. In Proceedings of the ACM Conference on
Supporting Group Work (GROUP ’99, Phoenix, AZ), ACM, New York, NY.

Extending Document Management Systems • 169

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

EDWARDS, K. AND LAMARCA, A. 1999. Balancing generality and specificity in document
management systems. In Proceedings of the 7th IFIP Conference on Human-Computer
Interaction (INTERACT ’99, Edinburgh, Scotland), IFIP, Laxenburg, Austria.

FREEMAN, E. AND FERTIG, S. 1995. Lifestreams: Organizing your electronic life. In
Proceedings of the AAAI Fall Symposium on AI Applications in Knowledge Naviation and
Retrieval (Cambridge, MA, Nov.), AAAI Press, Menlo Park, CA.

GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1995. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series. Addison-Wesley Longman Publ. Co., Inc., Reading, MA.

GIAMPAOLO, D. 1998. Practical File System Design with the Be File System. Morgan
Kaufmann, San Mateo, CA.

GIFFORD, D., JOUVELOT, P., SHELDON, M., AND O’TOOLE, J. 1991. Semantic file systems. In
Proceedings of the Thirteenth ACM Symposium on Operating System Principles (Pacific
Grove, CA), ACM Press, New York, NY.

GREENE, S. L., DEVLIN, S. J., CANNATA, P. E., AND GOMEZ, L. M. 1990. No IFs, ANDs, or ORs:
a study of databases querying. Int. J. Man-Mach. Stud. 32, 3 (Mar. 1990), 303–326.

GUY, R. 1990. Implementation of the Ficus replicated file system. In Proceedings on Summer
USENIX Conference (June 1990),

HARRIS, J. AND HENDERSON, A. 1999. A better mythology for system design. In Proceedings of
the ACM Conference on Human Factors in Computing Systems (CHI ’99, Pittsburgh, PA,
May), ACM Press, New York, NY.

KIM, W. 1990. Object-oriented databases: Definition and research direction. IEEE Trans.
Knowl. Data Eng. 2, 3 (Sept.), 327–341.

KISTLER, J. J. AND SATYANARAYANAN, M. 1992. Disconnected operation in the Coda File
System. ACM Trans. Comput. Syst. 10, 1 (Feb. 1992), 3–25.

LAMARCA, A., EDWARDS, K., DOURISH, P., LAMPING, J., SMITH, I., AND THORNTON, J.
1999. Taking the work out of workflow: Mechanisms for document-centric collaboration. In
Proceedings of the 6th European Conference on Computer-Supported Cooperative Work
(ECSCW ’99, Copenhagen, Denmark, Sept. 12–16), Kluwer Academic, Dordrecht, Nether-
lands.

DE LARA, E., PETERSEN, K., TERRY, D., LAMARCA, A., THORTON, J., SALISBURY, M., DOURISH, P.,
EDWARDS, K., AND LAMPING, J. 1998. Caching documents with active properties. In
Proceedings of the Seventh Workshop on Hot Topics in Operating Systems (HOTOS-VII),

MOGUL, J. 1984. Representing information about files. In Proceedings of the Fourth
International Conference on Distributed Computing Systems (San Francisco, CA), IEEE
Press, Piscataway, NJ, 432–439.

PATON, N. W. AND DIAZ, O. 1999. Active database systems. ACM Comput. Surv. 31, 1, 63–103.
PHELPS, T. A. AND WILENSKY, R. 1996. Toward active, extensible, networked documents:

Multivalent architecture and applications. In Proceedings of the 1st ACM International
Conference on Digital Libraries (DL ’96, Bethesda, MD, Mar. 20–23), E. A. Fox and G.
Marchionini, Eds. ACM Press, New York, NY, 100–108.

RICHTER, J. AND CABRERA, L. F. 1998. A file system for the 21st Century: Previewing the
Windows NT 5.0 file system. Micr. Syst. J. (Nov.).

SUN MICROSYSTEMS. 1989. Network file system protocol specification (RFC 1049). DDN
Network Information Center, SRI International, Menlo Park, CA.

TRIGG, R., BLOMBERG, J., AND SUCHMAN, L. 1999. Moving document collections online: The
evoluation of a shared repository. In Proceedings of the 6th European Conference on
Computer-Supported Cooperative Work (ECSCW ’99, Copenhagen, Denmark, Sept.
12–16), Kluwer Academic, Dordrecht, Netherlands, 331–350.

UNGAR, D. AND SMITH, R. B. 1987. Self: The power of simplicity. In Proceedings of the
OOPSLA 1987 Conference on Object-Oriented Programming Languages, Systems and Appli-
cations (OOPSLA’87), ACM, New York, NY, 227–242.

Received: February 1999; accepted: December 1999

170 • P. Dourish et al.

ACM Transactions on Information Systems, Vol. 18, No. 2, April 2000.

